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Conjugated circuit theory for graphite* 
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Computations for the "conjugated circuits" model which has previously only 
been treated for finite and quasi-one-dimensional conjugated ~--networks are 
here extended to the graphite lattice. Many-body techniques give the resultant 
resonance energy per site as a function of a physically relevant long-range 
order parameter. 
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I. Introduction 

Valence-bond (VB) theory and various resonance-theoretic simplifications thereof 
have a long history [1] in chemistry. Especially its qualitative utilization and its 
correspondence with classical chemical-bonding ideas have been emphasized in 
the best-known works [2]. Quantitative computations even of a semiempirical 
nature have come only with some greater difficulty, especially for extended systems 
where the number of relevant VB structures increases exponentially with system 
size. Nevertheless nontrivial treatments of both quasi-one-dimensional [3, 4] and 
two-dimensional [3, 5] systems have been achieved most commonly just enumerat- 
ing Kekul6 structures. For the quasi-one-dimensional case extensions to compute 
Pauling bond orders [3] or conjugated-circuit counts [6, 7] have also been made, 
and for the two-dimensional case an extension to compute pair correlation 
functions [8] has been reported. Here we report an exact solution for the 
(resonance-theoretic) "conjugated-circuits" model of (Herndon [9] and Randi6 
[10]) on a two-dimensional graphite lattice. In fact a whole family of solutions 
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is obtained, as a function o f  a physically relevant long-range order parameter 
[3, 6, 11] (or resonance quantum number). 

The conjugated-circuits model is defined in terms of Kekuld structures, i.e., VB 
structures wherein every w-center is "paired" to exactly one other or-center. Given 
a Kekul6 structure-K a conjugated circuit is a cycle consisting of  alternating single 
and double bonds (in K) .  For a "benzenoid" system, such as graphite, all 
conjugated circuits are [ 12] of size 4n + 2 (with n an integer), and the conjugated- 
circuits 7r-resonance energy for a system represented by the molecular graph G 
is [10] 

E( G) = Y, Rn ~ N4n+2(G, K)/ #( G), (1 .1)  
n K 

where the sum is over Kekul6 structures, Nm(G, K) is the number of  size-m 
conjugated circuits in the Kekul6 structure K, and # ( G )  is the number of Kekul6 
structures in G. This model can be motivated in different ways [9, 10], and has 
proven very successful in several applications [6, 7, 9, 10, 13, 14]. Of particular 
note is the use of this model [14] in treating elemental conjugated carbon cages, 
such as the C60 "Buckminsterfullerene" structure recently proposed [15] as an 
especially stable component arising in molecular beam experiments. Indeed this 
proposal has contributed to a renewed interest in aromaticity concepts and in 
possible new [16] allotropic forms for carbon. A reason for interest in the 
many-body aspects of our work is the possible aid in treating high-temperature 
superconductors [ 17] within a recently proposed [ 18] "resonating valence-bond" 
description. 

To carry out conjugated circuit calculations for a system G it is evident that a 
prerequisite is a Kekulr-structure count on G. Thence in Sect. 2 here we briefly 
review one such so-called transfer-matrix method [3] as applied to poly-polyphen- 
anthrene strips of varying widths w. The w = 1, w = 2 and w = 3 members of this 
family are indicated in Fig. 1. In Sect. 3 the transfer-matrix results are recast into 
a second-quantized language so as to allow the application of powerful many-body 
techniques. From this formulation we develop in Sect. 4 a "connection matrix" 
to solve in a formal manner the portion of the problem dealing with 6-circuits. 
Section 5 identifies the asymptotic w ~ ~ leading terms in this formal solution 

Fig. 1. The first 3 members o f  the poly- 
polyphenanthrene family of  polymer 
strips 
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and presents them in a fairly explicit form. Section 6 treats two different portions 
of the 10-circuit contribution via the same technique. The analytic results of these 
Sects. 4-6 are given in terms of 3 by 3, 4 by 4, and 5 by 5 determinants whose 
matrix elements are certain types of k-space (i.e., wavevector-space) integrals. 
Numerical results are given in Sect. 7 and a discussion of the results is presented. 
If desired, most of this last section can be understood after reading through the 
first part of Sect. 2 dealing with the long-range order parameter. 

2. Kekul6-structure count via transfer matrix 

A Kekul6 structure on a strip as in Fig. 1 may conveniently be described in terms 
of local structures specified at each location along the strip. Such a local state at 
a location as indicated by a vertical dashed line in Fig. 2 may be specified by a 
list of the positions of the various double bonds intersected by the vertical dashed 
line. Thence the possible bond positions are numbered from 1 to the strip width 
w, starting from the side with the "more exposed" position; this direction of 
numbering is indicated by arrows on the dashed lines of Fig. 2. A list of Q 
double-bond positions ml,m2, . . . ,mQ with l<_ml<m2<. . .<mo<-w is 
abbreviated to m(Q), and the associated local state is denoted [m(Q)). Then the 
local states proceeding form left to right in Fig. 2 are tl, 3), I1, 2), 12, 3), 11, 2), 
[1, 3), [1, 3), 11, 2), 12, 3). 

A transfer matrix T counts the allowed ways to proceed from one local state to 
the next. That is, its element (m'(Q')ITIm(Q)) is the number of ways of having 
local states Ira(Q)) and Im'(Q')) at adjacent locations. It turns out [3] that T is 
block-diagonal with respect to Q, the number of horizontally oriented double 
bonds at each location along the strip. This block-diagonalization, which carries 
over to the Hamiltonian, identifies Q as a resonance quantum number. That a 
given Kekul6 structure has the same Q down the whole length of a strip identifies 
Q as a long-range order parameter. Thence the number of Kekul6 structures with 
a given value of Q is of interest and is denoted by #Q(L). From the definition 
of the matrix elements of T it can be seen that (m '( Q)[Tdlm (Q)) gives the number 
of ways of having local states Im (Q)) and [m'(Q)) at locations a distance d apart. 

Generally, the Kekul6 count will depend upon the nature of the ends of the strip, 
which in fact are usually consistent only with a certain value of Q. Focusing on 
bulk features here, we assume cyclic boundary conditions for a strip of even 
length L. Then 

#Q(L) = TrQ T L 

where the trace is over the subspace labelled by Q. 

Fig. 2. A Q = 2  sample Kekul6 structure 
on  a w id th  w = 3 s t r ip  

I 

(Zl) 

I l 
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An eigenanalysis [3] for T is useful in refining the expression (2.1). As it turns 
out the eigenstates of T are labelled by sequences 

k(Q)  =- (kl,  k2 . . . .  , kQ), with 1 -< k I < k2<" �9 " < kQ <- W (2.2) 

such that the associated eigenvalues of T are up to sign given by 
o 

l~k(Q) = H hk, 
i~l 

h k = ( - - 1 ) k + l / {  2sin(2k--l\2w+12)}" (2.3) 

The appropriate sign is just the parity of i (Q/2),  the integer part of Q/2, but it 
plays little role in the work here. The normalized eigenvector [hk(O)) associated 
to hk(O) has components (on the Ira(Q)) basis) each of which is a determinant 
of a matrix with (i , j)th element (mi [ak), 

(m(O)[Zk(Q)) = det (mi ]hkj) (2.4) 

2 sin ( 2 k - 1  ) 
( m l h k ) - - v / ~ +  1 \ 2W+ 1 met , m , k = l t o w .  

Now (for even L) equation (2.1) may be recast as 

#Q(L)= Y {A~(o)} L. (2.5) 
k(Q) 

For large L this is strongly dominated by the eigenvalue(s) of maximum magni- 
tude. This unique eigenvalue is, up to sign, given by 

Q 

Ao = I] hk (2.6) 

and the associated eigenvector is denoted by [Ao). Thence 

# o ( L )  ~A(~, as L~oo.  (2.7) 

From the simplest resonance theory [19] the most favored Q value would be that 
for which A o is a maximum, this occurring at Q = i (w/3)  or Q = i (w /3 )+  1. 

3. Second quantization 

The results of the preceding section may be recast to reveal the potential for the 
use of powerful many-body techniques. First, the local-state space upon which 
T acts is [3] mathematically isomorphic to an antisymmetric Fock space with w 
Fermionic orbitals, each labelled by a potential double-bond position. Then we 
may introduce Fermionic creation and annihilation operators a+~ and a,, such that 

{a~, a~ +}={am, a,} = 0  
(3.1) 

{a + , an} = 6,~, 

and it is seen that Ira(Q)) corresponds to a Q-particle Slater determinant with 
the orbitals labelled by rnl, m 2 , . . . ,  m o occupied, 

+ 
Ira(Q))= am,am2 + + "" �9 a m o ] O ) ,  (3.2) 
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where 10) is the v a c u u m  state. It is to be emphasized that what we have are not 
conventional "orbitals" and "Q-particle" states and "vacuum" states, bu t  rather 
a mathematical isomorphism to a structure to which such names are commonly 
applied. It is really the powerful and perfectly legitimate mathematical techniques 
associated to this language that we seek to use. 

A second important point is that the eigenstates to T also correspond, within 
this isomorphism, to independent particle states 

q- + + 

]hk(Q)) = ak, ak2 " " " ako[0), (3.3) 

where a~ and ak are Fermionic creation and annihilation operators with 

~ =  ~ (mlhg)a+~. (3.4) 
m = l  

The relation inverse to that of (3.4) is 

a + =  ~. ( m l h k ) * a ~ .  (3.5) 
k = l  

Now expectation values for such (independent-particle) eigenstates are suscep- 
tible to Wick's-theorem-type factorization. That is, it treats expectation values 

( A o l b l b 2 "  " " b z , l A  o)  =- ( b , b 2 .  . . b2, ) ,  (3.6) 

where the bi in our case are either purely creation operators or purely annihilation 
operators. Clearly for this expectation value to be nonzero there must be equal 
numbers of each. Thence let the n annihilation operators be At, i = 1 to n, 
numbered as they appear in going from left to right in (3.6), and let the n creation 
operators be Ci, i = 1 to n, numbered in going from right to left. Further define 
an n by n matrix M with (i , j)th element 

MO =_ [ +(  C, A j ) ,  C, left of Aj in (3.6) 
( - ( A j C , ) ,  C~ right of Aj in (3.6). (3.7) 

Then the expectation value is given in terms of the determinant of M 

(b~b2 . �9 �9 b : , )  = +det M, (3.8) 

where the sign here is given as the parity of the permutation carrying the A's 
and C's as they appear in the expectation value to the standard order 
(7 , .  �9 �9 C 2 C ~ A ~ A 2  �9 �9 �9 An .  This Wick-type theorem of (3.8) is given in nearly this 
form by Linderberg and Ohrn [20]. (The temperature 1/13 there is to be taken 
to 0, and their times may be used to specify an order for the operators, following 
which one takes the limit that all times approach 0.) 

4. Counts for conjugated 6-circuits 

A typical conjugated 6-circuit on a strip appears as in Fig. 3. There also are 
labelled several potential double-bond positions, where it is understood that the 
strip proceeds horizontally, as in Fig. 1. Now from Fig. 3 it is seen that this 
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Fig. 3. The n u m b e r i n g  of  pos i t ions  nea r  a con juga ted  6-circuit  
Fig. 4. The con juga ted  6-circui t  " d u a l "  to tha t  of  Fig. 3 

particular conjugated circuit occurs if and only if: first, position m is "un- 
occupied" in the first column shown on the left; second, position w -  m + 1 is 
"occupied" in the next column; and third, position m is "unoccupied" in the 
third column, shown on the right. Then noting that a,,a+~ and a,a,+ are the 
projection operators for nonoccupation and occupation, respectively, of position 
n by a double bond, we obtain the number of Kekul6 structures with this particular 
conjugated 6-circuit of Fig. 2 as 

+ + + L--2 
Tr O {a,,,a,,Taw_,,,+law_~+lTamamT }. (4.1) 

Next, to every Kekul6 structure with the conjugated 6-circuit of Fig. 2 there 
clearly corresponds exactly one Kekul4 structure with the "dual"  conjugated 
6-circuit of Fig. 4; these two corresponding structures are the same except as 
regards this single circuit. Thus the count for these dual conjugated 6-circuits is 
the same and may be accounted for simply by multiplying the expression of (4.1) 
by 2. Further, summation over m = 2 to w, yields the count for the whole column 
of 6-circuits at the given location along the strip, and multiplication by L accounts 
for the various locations. Thus the total conjugated Gcircuit count is 

#~)(L)  = 2L ~ Tr o {ama+,,Ta+_m+law_~+lTa~a;TL-Z}. (4.2) 
m=2 

Just as in the argument leading to (2.7) we presently obtain 

+ + + L 2  #~)(L)  = 2L ( ama,~Taw-m+law-r~+l Tamam)AQ , L ~ oo (4.3) 
m=2 

where the notation for expectation values is as in (3.6). For the two operators 
remaining we may insert a spectral resolution, but the non-maximal eigenvalues 
cannot be neglected due to their size since they are not raised to a high power. 
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Thence with the utilization of this spectral resolution, with the introduction the 
decompositions of (3.5), and with the division by #o(L) as in (2.7), one obtains 

# ~ ) ( L ) _ 2 L  ~ E E E {(m[hk,)(mlAk2)*(mlhk3)(mlh~) * 
#Q(L) A~ m=2 k ' (Q)  k"(Q) k ,k2k3k 4 

-t- . -i- 
X (Aolo~klak2lhk,(Q))hk,(Q)(Ak,(o)law_m+law_m+llhk,,(O)) 

4- x Ak,,(Q)(Ak,,(Q)IO%ak4IAQ)}. (4.4) 

But the intermediate states labelled by k'(Q) and k"(Q) clearly yield a nonzero 
result only if they involve no more than the change of one orbital index from 
k(Q) (since they are to be connected to (AQ[ and [AQ) on the left and right by 
a one-particle operator). More specifically we find that the only nonzero results 
occur for Ak'(O) = AQAkl/Ak 2 and Ak,,(Q) = AQAkJhka. Thence making this substitu- 
tion and recognizing that the remaining k'(Q) and k"(Q) dependences appear 
simply as resolutions of the identity, one obtains 

# ~ ' ( L ) = 2 L  ~, ~, {l~I(m[A~)} 
#Q(L) m=2 klk2k3k 4 /=1 

X ( O l k O l ~ 2 a ; _ m + l a w _ m + l O l k 3 0 l ~ 4 )  A k ' A k a .  (4 .5)  
hk2/~k 3 

Next introducing the operators 

am,, ---- E ,~(m [ Ak)ak (4.6) 
k 

and their adjoints + obtain a a,,,i, we compact expression for the mean conjugated 
6-circuit count per site 

#~)(L) 1 w 
(6)~ --- 2 ~ L )  = w mL_-2 (am"a+'-'a+-m+'aw-m+lam'-'a+'l) (4.7) 

valid in the limit of large L. 

At this point the theorem of (3.8) may be applied to give 

[ --(am, la+,l) --(aw_"+la+w_~+l) --( am,_la+,l) 
1 ~ d e t / -  (am,,a+~_,,,+') ( a +  , ,+law_m4-l)  (a+w-,,,+,a,,,.-,)l, 

(6)~ = w,.=2 \ _(am, la+,_l) (a+,_law_m+l) (a+m,_la,,_l) ] 

(4.8) 

where also we have noted that am, o = am. There remains the evaluation of these 
single-particle expectation values in this determinant. 
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5. M a t r i x  e l e m e n t  e v a l u a t i o n  

The matrix elements of the determinant in (4.8) and those of the following section 
are straightforward to evaluate for finite width strips. One of two generic forms 
they may take is 

(a+,,:ia,d)= ~ AikAJk,(mlhk)(nlhk,)*(~-~ak,) 
k,k'~l 

(2 
= y x~+J(mlx~)(nlA~) *, (5.1) 

k=l  

where we have noted (as follows from (3.3) and the discussion near (3.6)) that 
the first Q "eigenorbitals", with k = 1 to Q, are "occupied" in ]Ao). The second 
generic form is 

(amaa,,+~)= ~ )t~+J(m[3,k)(nlhk) *. (5.2) 
k=O+l  

For finite w these are finite sums with the summands given explicitly in (2.3) and 
(2.4). Thence the finite-width (infinite length) result is expressed as a finite 
calculation, though tedious and  hence conveniently carried out by computer. 

For the infinite-width limit the computation may be simplified. The development 
treats two cases dependent upon the relation between m and n: either n = m + 6 
or n = w - m + 6 with 6 a small integer 0, • +2. In the  first case, the m-dependent 
portion of the summands in (5.1) and (5.2) may be rewritten as 

4 
(m ]hk)(m + 6 ]/~k)* = 2w +------1 sin Om. sin O(m + 3) 

2 
= ~ {cos 30 - cos (2m + 6)0}, (5.3) 

where for brevity 0 ~ - ( 2 k - 1 ) 7 r / ( 2 w +  1). In the second case the corresponding 
quantity is rewritten as 

2 
(m L xk) (w-  m + 61 ~k)* = 

2w + 1 

2 

2 w + l  

- -  {cos (2m - w - 3) 0 - cos (w + 3) O} 

- - -  (-1)k+l{sin (2m - 6 +�89 + sin (3 -�89 (5.4) 

Now for typical values of  m and k, the m-dependent terms in the resulting 
expressions of (5.3) and (5.4) will lead to negligible summations, because these 
terms will oscillate in sign as k varies while the/X ~+J remaining in the summands 
will vary much more slowly--infinitely more slowly in the w -> ~ limitl One way 
t o  see the negligible contribution of these terms more clearly is to replace the 
k-sums by integrals over 0. Thence one finds the matrix elements of the type that 
arise take only either the form 

l f {sin~}-~-J{cos 60-cos(2m+8)O} dO (5.5) 
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when n -- m + ~ and also i + j  = even, or 

1 r f O] -i-j 
-~ J t s i n ~  {sin(6-�89189 (5.6) 

when  n = w - rn + 6 and  also i + j  = odd. The ranges o f  integrat ion are 0 to q~r 
for  the integrals associa ted to (5.1) and qTr to ~r for  (5.2), where  q is a "no rma l i zed"  
resonance  quan tum n u m b e r  

q -= Q~ w (5.7) 

which in fact is just  the doub le -bond  densi ty on the hor izonta l ly-or iented b o n d  
positions.  Then  for  w--> ~ ,  most  m ~ ~ too,  and (5.5) and (5.6) take the forms 

i I  t Z J  f " o]--i--J i f  { ~}--i--j - - - -  c o s d 0 " l s m : ~  dO and - -  s i n ( 6 - � 8 9  sin dO (5.8) 
q'g 7T 

which are analyt ical ly integrable by s tandard  means.  Thence  (4.8) is finally 
ob ta ined  as 

( 6 ) q = - d e t  

1 rr 1 
- ~ - ~ c o t  q ~  ~ ( q - 1 )  q - 1  

1 
~ ( q - 1 )  q - q + l s i n  q7 

1 2 
q - 1 - q  + - -  sin q~  2 q - - -  sin q~" 

77" 'W 

(5.9) 

which in fact  is exact  (in the large L and w limit) except  for  correct ions of  order  
1/w and higher.  

6. Conjugated 10-circuits 

Of  the two types of  or ientat ions possible  for  a conjugated 10-circuit, we first treat  
the " d i a g o n a l "  or ienta t ion of  Fig. 5. There  also we have labelled several  potent ia l  
doub le -bond  posit ions,  with the strip p roceeding  horizontally.  N o w  it is seen 
that  the par t icular  conjugated  circuit occurs if  and  only if: first, posi t ion m is 

w - m + 2  

w - m + 2  

rn m 

w - m + 1  m + l  m + l  

5 m+l 6 w - m  

Fig. 5. The numbering of the positions near a "downward" diagonally-oriented conjugated 10-circuit 
Fig. 6. The numbering around a vertically oriented conjugated 10-circuit 
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"unoccupied" in the first column; second, position w - m  + 1 is "occupied" in 
the second column; third, position m + 1 is "occupied" in the third column; and 
fourth, position w - m + 1 is "unoccupied" in the fourth column. Thus, following 
the argument leading to (4.2), we obtain the total count for like-oriented diagonal 
conjugated 10-circuits 

Tro 
m=2 

+ + + + L--3 {a,,amTaw-m+law-,,+lTam+lam+lTaw-,,+law-,,+lT }. (6.1) 

The type of argument leading to (4.5) and (4.7) now can be repeated for the 
/ 

present case to give 

#~~ 1 
Z {(Aola,~.,a*.,,-~a+~-.,+law-m+llAk"(Q)) (10, d)q ~ 2Lw# Q( L ) - w AQ m = 2  k"(Q) 

+ + 
x hk,,(Q)(hk,,(Q)[am+la,,+law-,,+l,la~-m+l,l[AQ). (6.2) 

But here too the Ik"(Q)) that give nonzero contributions cannot differ too greatly 
from IAo). That is, in the last matrix element here the a+'s and a's can be resolved 
into a+'s and a'S, then hk,,(O) replaced by A o times an adjustment factor with 
two ratios of  Ak'S, and thence the resolution of the identity recognized and 
resummed to give a mean diagonal conjugated 10-circuit count 

1 ~ + + + + 
(10, d)o = - -  ~,. ( a m ,  l a m , - 1 C i w - m + l a w - m + l a m + l , l a m + l , - l a w - m + l , - 2 a w - m + l , 2 ) .  

W m=2  

(6.3) 

Finally the theorem of (3.8) is used to yield a determinamental formula and then 
the methods of Sect. 5 are used to evaluate the matrix elements, so that 

[ �89 - c  �89 - 1) q - 1 \ 

/ - c + � 8 9  q) �89 1) q q-s1 
(10, d)q det (6.4) 

l ( q  _ 1) q q - sl 2(q - Sl)  / 
/ 

\ q - 1  s l - q  2 s l - s 2 - q  4S l -S2-3q]  

where abbreviations for several simpte trigonometric functions have been 
introduced 

1 7r 
c----~-~ cot-~ q 

(6.5) 
1 

sp -= - -  sin p~q. p~- 

Again though (6.3) is exact, the suppression of the m-dependence leads to a 
result in (6.4) that is only exact disregarding corrections of  order 1/w and higher. 

The second "vertical" type of  orientation for conjugated 10-circuits is illustrated 
in Fig. 6, with labelled potential double-bond positions. This particular conjugated 
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circuit occurs if and only if: first, positions m and m + 1 are "unoccupied" in 
the first column; second, position w - m  is "occupied" in the second column; 
and third, positions rn and m + 1 are again "unoccupied" in the third column. 
Then following the now familiar arguments we obtain the mean vertical conju- 
gated 10-circuit count as 

(10, V)q = det 

-c -c+�89 q) �89 q) s 1 q-1 / 
-c+�89 -c -s,+�89 q-1 s, 

/ �89 q) -s, +�89 q) q -s ,+s 2 s l -  q 
/ 

s I q-1 -$'1 -F s2 2(q-s1) 2sl-s2-q] 
q - I  s I s l -q  2s l -s2-q  2(q-sO /(6.6) 

again exact up to order 1/w. 

The total mean conjugated 10-circuit count then is 

(lO)q =2(10, d)q +(10, v)q, (6.7) 

where the factor of 2 arises for (10, d)q because there are two possible orientations, 
downward slanted as in Fig. 5 and also upward slanted. Of course for finite w, 
(10)q could be precisely evaluated, as a finite sum over determinants as in (6.5) 
and (6.6) but with matrix elements expressed as finite sums as in (5.1) and (5.2). 

7. Results and discussion 

The final resonance energy per site 

R.E.(q) = R,(6)q + RE(10)q (7.1) 

is a function of the "normalized" resonance quantum number q = Q~ w, giving 
the fraction of  bonds oriented in one direction, each fraction q identifying a class 
of  Kekul6 structures. Explicit asymptotically exact expressions for the mean (per 
site) conjugated 6- and 10-circuit counts are given by (5.9), (6.4), (6.5) and (6.6). 
Evaluation of  these expressions for the 6-circuit density, for the vertically-oriented 
10-circuit density, and for either diagonally-oriented 10-circuit density yields the 
curves for (6)q, (10, V)q, and (10, d)q shown in Fig. 7. Using these results one 

o35 o. o o35 1.bo q 

0 . 1 5  - 

0 . 1 0  ~ 

0 , 0 5  

Fig. 7. The three different conjugated-circuit 
counts described in the text 
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may compute the resonance energy per site via (6.6) and (7.1), if a choice for 
the parameters R1 and R2 is made, such as that recommended by Herndon [9] 

R I =  0.841 eV and R2 =0.336 eV. (7.2) 

Alternative parameterizations [10] were not used since they assume conjugated 
14-circuit counts, which we have not made here. (By our present approach these 
counts for graphite would involve four additional determinants of sizes up to 7 
by 7.) 

Our overall resonance energy per site referenced against the (maximum) value 
(of 0.1996 R~) at q = 1/3 is shown in the solid curve of  Fig. 8 where also we 
show in the dashed curve the result for a simple Kekulr-structure estimator of 
the resonance energy. This estimator [9] is proportional to the logarithm of the 
number of Kekul6 structures as previously obtained [3] and as here referenced 
against its (maximum)value (of0.161533) at q = 1/3. It appears that the maximum 
for the Herndon-Simpson resonance energy also occurs at q = 1/3, and evidently 
so also do the maxima for {6)q and (10)q. Thence the values of the various 
expectation values at q = 1/3 are of interest 

(6)1/3 = 0.1450142 

(10, d)~/3 = 0.4556076 (7.3) 

( 1 0 , / 3 ) 1 / 3  = (10, d)1/3. 
Since the resonance energy maxima occur at q = 1/3, one finds that: these models 
do not require [11,21] a distortion from hexagonal symmetry; the Pauling 
~--bond-order of every bond is the same (1/3) in the most stable phase of the 
extended honeycomb lattice, and all bond lengths are equal. Though these results 
are as many expect, it is of interest to verify them for the conjugated-circuit 
model, especially since there has been some experimental [22] ambiguity. Similar 
conclusions evidently apply [23] for the HiJckel molecular orbital model for 
graphite. Finally our results here provide thefirst asymptotically exact conjugated- 
circuit counts for a two-dimensionally extended network. 
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